If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7y^2-30y+9=0
a = 7; b = -30; c = +9;
Δ = b2-4ac
Δ = -302-4·7·9
Δ = 648
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{648}=\sqrt{324*2}=\sqrt{324}*\sqrt{2}=18\sqrt{2}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-30)-18\sqrt{2}}{2*7}=\frac{30-18\sqrt{2}}{14} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-30)+18\sqrt{2}}{2*7}=\frac{30+18\sqrt{2}}{14} $
| -2(x-4)x=5 | | -5+4h=50.52 | | -7(5+2x)=-7 | | 6y-16=4y+8 | | 12+32+2s-4=48 | | 3(10-4x)=-2x | | 2y^2+24y-5=0 | | 36=y-45 | | 1/3x+2x=10 | | X-2(3x)=-25 | | 9x+54=18-2x=8 | | x=5/4+4 | | 9(x+1)=5 | | 4y^2-18y+3=0 | | 12+s+4=48 | | 3r^2+6r-105=0 | | -5+2x=-3x+15 | | 14x-5=6x-1 | | 3(x+1)-7x=-13 | | 1y^2+12y-1=0 | | x-2/5=3/4 | | X²+x-3=0 | | 1-4n=9-3n | | 2.71^(2x)=83 | | -5x+9=6x-123 | | (x/4)-5=-8 | | X+3+7x=67 | | 7(-6x-3)=357 | | 1+4x+-5x=12 | | -5(2n-4)=40 | | 1+4×+(-5x)=12 | | 2y+25=6y+5 |